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- classically -
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Lattices and Quadratic Forms

e Every lattice basis A € GL,,(R) of a lattice L = AZ"

defines a positive definite symmetric (Gram) matrix Q) = A*A .

Sty = { Qe R : () symmetric and positive definite }

q;;
)
e () € 87, defines a pos. def. quadratic form (PQF)
n N —
Qlz] = 2'Qr = Zqiiw? T QZQ-ijin
i=1 i<j \qu

Different bases of a lattice yield integrally equivalent PQFs:
L=AZ" & L= (AU)Z" for U € GL,(Z)
A'A=0Q ~ Q' =U'QU = (AU )'(AU)



Reduction Theory

for positive definite quadratic forms
GL,(Z) acts on 82, by Q — U'QU
Task of a reduction theory is to provide a fundamental domain

Classical reductions were obtained by Lagrange, Gaul3, Korkin
and Zolotareff, Minkowski and others... All the same for n = 2:
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Voronoi’s reduction idea

Georgy Voronoi
(1868 — 1908)

Observation: The fundamental domain can be obtained from
polyhedral cones that are spanned by rank-| forms only

Voronoi’s algorithm gives a recipe for the construction of a
complete list of such polyhedral cones up to GL,(Z)-equivalence
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Perfect Forms

min(Q) = xe%i\?O} Qlx] s the arithmetical minimum

Q is uniquely determined by min(Q) and

Q € 8%, perfect <

MinQ = {xe€Z" : Qx| =min(Q) }
For Q € 82, its Voronoi cone is V(Q) = cone{xx’ : x € MinQ}
THM: Voronoi cones give a polyhedral tessellation of &3,

and there are only finitely many up to GL,(7Z)-equivalence.

(Voronoi cones are full dimensional if and only if Q is perfect!)
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Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices
with arithmetical minimum at least | is called
Ryshkov polyhedron

R = {QeS8", : Qx] > IforalxeZ"\ {0}}

® R is a locally finite polyhedron

® Vertices of R are perfect




Voronoi’'s Algorithm

Start with a perfect form ()

1. svP: Compute Min () and describing inequalities of the polyhedral cone

PQ) ={Q eS" : Qz]>1foralz e MinQ }

2. PolyRepConv: Enumerate extreme rays R, ..., R;. of P(Q)
3. SvpPs: Determine contiguous perfectforms (), = Q +aR;,, 1 =1,...,k
4. 1ISOMs: Test if (); is arithmetically equivalent to a known form

5. Repeat steps 1.—4. for new perfect forms
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e Martinet (2003): “The existence of Ex [...] makes
hopeless any attempt [...] in dimension &.”




Computational Results

e BOTTLENECK: Computing vertices of polyhedral

e Martinet (2003): “The existence of Eg [...] makes
hopeless any attempt [...] in dimension &.”

n | # perfect forms author(s)

2 1 Lagrange, 1773

3 1 Gaul3, 1840

4 2 Korkine & Zolotareff, 1877

5! 3 Korkine & Zolotareff, 1877

6 7 Barnes, 1957

7 33 Jaquet-Chiffelle, 1991

8 10916 Dutour Sikiri¢, Sch. & Vallentin, 2007
9 > 500000

Computer assisted proof with Hecursive Ad). Decomp. Method (ADM)
for vertex enumeration up to symmetries

( showing that the “Eg-polytope” has 25075566937584 vertices in 83092 orbits )



Computational Results

e BOTTLENECK: Computing vertices of polyhedral

e Martinet (2003): “The existence of Eg [...] makes
hopeless any attempt [...] in dimension &.”

n | # perfect forms author(s)

2 1 Lagrange, 1773

3 1 Gaul3, 1840

4 2 Korkine & Zolotareff, 1877

5! 3 Korkine & Zolotareff, 1877

6 7 Barnes, 1957

7 33 Jaquet-Chiffelle, 1991

8 10916 Dutour Sikiri¢, Sch. & Vallentin, 2007
0 > 5000000 Wessel van Woerden, 2018 !

Computer assisted proof with Hecursive Ad). Decomp. Method (ADM)
for vertex enumeration up to symmetries

( showing that the “Eg-polytope” has 25075566937584 vertices in 83092 orbits )
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Adjacency Decomposition Method

(for vertex enumeration)

@ ® Find initial orbit(s) / representing vertice(s)
® For each new orbit representative
® enumerate neighboring vertices (up to symmetry)

BOTTLENECK: Stabilizer and In-Orbit computations

Oﬁldd as orbit representative if in a new orbit

Representation conversion problem

=> Need of efficient data structures and algorithms for
permutation groups: BSGS, (partition) backtracking
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Representation Conversion
In practice

Best known Algorithm:

Sym

A C++-Tool POI

also available through polymake 4’(

® helps to compute linear automorphism groups
Thomas Rehn

® converts polyhedral representations using (Phd 2014)

Recursive Decomposition Methods (Incidence/Adjacency)

http://www.geometrie.uni-rostock.de/software/
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Applicaton: Lattice Sphere Packings

The lattice sphere packing problem can be phrased as:

Minimize (det @)™ on
R =1{QeS8 : Qz] =1forallz € Z"\ {0} }
det = Const.
\V V/

n
S>0

1(]21i71% (det Q)™ is attained at vertices of R (perfect forms)
S
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Koecher’s generalization

1960/6 1 Max Koecher generalized
Voronoi’s reduction theory and proofs
to a setting with a self-dual cone C Max Koecher. 1924-1990

Under certain conditions, he shows that
C is covered by a tessellation of polyhedral Voronoi cones
and “approximated from inside” by a Ryshkov polyhedron

Can in particular be applied to obtain reduction domains
for the action of GL,(Ok) on suitable quadratic spaces
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Applications in Math

Ryshkov Polyhedron Vertices / Perfect Forms:
—_— * Reduction theory

, * Hermite constant
Representation

Conversion Polyhedral complex:
e Coh | f GL,(O
S ohomology o (Ok)
GL,(Ok) symmetric * Hecke operators

 Compactifications of
See Mathieu’s talk mOd.UII spaf:es.
after the coffee break! of Abelian varieties

w

AIM Square group 2012: Gangl, Dutour Sikirié, Schurmann, Gunnells, Yasaki, Hanke
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Embedding Koecher’s theory

For practical computations: Koecher’s theory can be embedded
into a linear subspace T
in some higher dimensional space of symmetric matrices

IDEA (Bergé, Martinet, Sigrist, 1992):

Intersect Ryshkov polyhedron R with a linear subspace 1" C §"

DEF: () €1 NSL, isT-perfectifitisavertexof RNT



Voronoi’'s Algorithm

for a linear subspace T

SVPs: Obtain a T'-perfect form ()

1. svP: Compute Min () and describing inequalities of the polyhedral cone

PQ) ={Q €T : Q[z]>1foralxz c MinQ }

2. PolyRepConv: Enumerate extreme rays R, ..., R;, of P(Q)

3. For the indefinite 7,1 =1,...,k
SVPs: Determine contiguous perfect forms (); = Q) + aR,;

4. T-IsOMs: Test if (); is T-equivalent to a known form

5. Repeat steps 1.—4. for new perfect forms



Voronoi’'s Algorithm

for a linear subspace T

SVPs: Obtain a T'-perfect form ()

1. svP: Compute Min () and describing inequalities of the polyhedral cone

PQ) ={Q €T : Qz]>1foralx € MinQ }

2. PolyRepConv: Enumerate extreme rays R, ..., R; of P(Q)
3. For the indefinite B, i =1,... k Possible
_ _ existence of
SVPs: Determine contiguous perfect forms (); = () + aR,; “Dead-Ends“

4. T-1soMs: Test if QQ; is T-equivalent to a known form (for PQFs R)

5. Repeat steps 1.—4. for new perfect forms



G-invariant theory

Q,Q" € T NS?, are called T-equivalent, if JU € GL,(Z) with
Q =U'QU and T =U'TU

For a finite group G' C GL,(Z) the space of invariant forms
Te = {QeS" : GCAuQ}

is a linear subspace of §"; T NS, is called Bravais space

THM (Jaquet-Chiffelle, 1995):
{ Te-perfect @ : AN(Q) =11}/ ~rg, finite



Applicaton: Lattice Sphere Packings

with prescribed symmetry

n 2 4 6 8 10 12
# &-perfect 1 1 2 5 1628 ?
maximum o | 0.9069 ... [ 0.6168...10.3729 ... 10.2536...10.0360 . ..
Perfect Eisenstein forms
n 2 4 6 8 10 12
# G-perfect 1 1 1 2 > 8192 | ?
maximum 6 | 0.7853 ... 1 0.6168...10.3229...10.2536. ..
Perfect Gaussian forms
n 4 8 12 16
# O-perfect 1 1 8 ?
maximum o | 0.6168...10.2536...10.03125 ...

Perfect Quaternion forms




PART Ill:
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Further Generalization? ... and application!

IDEA: Generalize Voronoi’s theory to
other convex cones and their duals

In particular to the completely positive cone

CP, = cone{zz' :z € R%y} and its dual, the copositive cone

COP, =(CP,)" ={BeS8":{A,B) >0forall AcCP,}

={B 8" : Blz] >0 for all z € Ry}

cP, C &, C COP, T

(A, B) = Trace(A - B) denotes the standard inner product on &"
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Application: Copositive Optimization

® Copositive optimization problems are convex conic problems

min (C,Q) such that (Q,A) =b;, i=1,...,m
and Q € CONE
CONE = RY, CONE = CP, or COP,
Linear Programming (LP) Copositive Programming (CP)

NP-hard (2000)
CONE = S,

Semidefinite Programming (SDP)

Such problems have a duality theory and allow certificates for solutions!
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cp-factorizations and certificates

DEF: A finite set X C R%, is called a certificate
for Q € 8" being completely positive,
if it gives a cp-factorization Q = z:xxT
xeX

PROBLEM: How to find a cp-factorization for a given Q ?

Known approaches so far:

® Anstreicher, Burer and Dickinson (in Dickinson’s thesis 201 3)
give an algorithm only for matrices in interior based on ellipsoid method

Numerical heuristics have been proposed by Jarre, Schmallowsky (2009),
Nie (2014), Sponsel and Dur (2014), Groetzner and Dur (preprint 2018)

Non of these approaches is exact and latter do not even guarantee to find solutions!
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Copositive minimum (COP-SVP)

DEF: mincopQ = min Qx| is the copositive minimum
XEZ”>O\{O}

Difficult to compute!

THM: (Bundfuss and Dur, 2008)

For Q € int COP,, we can construct a family of simplices AX

in the standard simplex A = {x & ano X+ ...x, = | }

such that each AX has vertices v, ... v, with v,-Tij >0

Computation in practice:

“Fincke-Pohst strategy” to compute mincop Q in each cone AX
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Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices

with copositive minimum at least | is called
Ryshkov polyhedron

R = {QeCOP, : Q[x] > | forallx e Z%,\ {0}}

DEF: Q < intCOP, is called COP-perfect if and only if

Q is uniquely determined by min¢cop Q and
MincopQ = { X € ano : Q[X] = mincorQ }

® R is a locally finite polyhedron (with dead-ends / rays)

e Vertices of R are CO'P-perfect
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Voronoi-type simplex algorithm
Input: A € 82,

COP-SVPs: Obtain an initial COP-perfect matrix Bp

|. if (Bp,A) < 0 then output A & CP, (with witness Bp)
2. LP: if A € cone {xxT C X € Minc@po} then output A & C77n
3. COP-SVP: Compute MincopBp and the polyhedral cone

P(Bp) = {B€S" : B[x] > | forall x € MincopBr }
4. PolyRepConv: Determine a generator R of an extreme ray of P(Bp)
with (A,R) < 0.
5. LPs: if R € COP, then output A & CP, (with witness R)
6. COP-SVPs: Determine the contiguous COP-perfect matrix
By := Bp + AR with A > 0 and minco»Bny = |
/. Set Bp := By and goto |.



Voronoi-type simplex algorithm

Input: A € &7, CP, = cone {xx : x € Q"}
COP-SVPs: Obtain an initial COP-perfect matrix Bp
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Voronoi-type simplex algorithm

Input: A € &7, CP, = cone {xx : x € Q"}
COP-SVPs: Obtain an initial COP-perfect matrix Bp

|. if (Bp,A) < 0 then output A & CP, (with witness Bp)
2. LP: if A € cone {xxT : X E Minc@po} then output A & Ci’n
3. COP-SVP: Compute Minco»Bp and the polyhedral cone

P(Bp) = {B€S" : B[x] > | forall x € MincopBr }
4. PolyRepConv: Determine a generator R of an extreme ray of P(Bp)
with (A,R) < 0. ( flexible "pivot-rule”)
5. LPs: if R € COP, then output A & CP, (with witness R)
6. COP-SVPs: Determine the contiguous COP-perfect matrix
By := Bp + AR with A > 0 and minco»Bny = |
/. Set Bp := By and goto |.
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A copositive starting point

THM:

/2—1
1
0
L o

5

0

0

0

0

2 —1

o -1 2

ZN\

is COP-perfect

N




A copositive starting point

THM 0 | is COP-perfect

o0
-

oo oy
/

Proof. Matrix QQa, 1s positive definite since

—:131+Z i — Tip1)> + x> for x € R.

In particular it lies in the interior of the copositive cone. Furthermore,

k

mincop Qa, =2 with  Mincop Qa, = Zej 1< 73 <k<n
=]
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Interior cases

(algorithm terminates) m
6 3

EX: A = <3 2> | ¥ | l 1 '

Starting with Qa, one iteration of the algorithm finds

the COP-perfect matrix Bp = (_;/2 _33/2> and

@6 G0 06
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Boundary cases from CP,

(algorithm terminates with a suitable pivot-rule)

(8 5 1 1 5)

b5 8 5 1 1
EX: 1 5 &8 5 1 from Groetzner, Dur (2018)
. 1 1 5 &8 5 not solved by their algorithms

\5 1 1 5 8)

Starting with Q4,, our algorithm finds a cp-factorization after 5 iterations

v = (0,0,0,1,1) w6 = (1,0,0,0,1)
vy = (0,0,1,1,0) vy = (1,0,0,1,2)
vs = (0,0,1,2,1) vs = (1,1,0,0,0)
vy = (0,1,1,0,0) v9 = (1,2,1,0,0)
vy = (0,1,2,1,0) v = (2,1,0,0,1)

giving a certificate for the matrix to be completely positive



Exterior cases >
(algorithm conjectured to terminate)

(1 1 0 0 1)
1 2 1 0 0
EX: |0 1 2 1 0 from Nie (2014)
O 0 1 2 1
\1 0 0 1 6)




Exterior cases y

(algorithm conjectured to terminate)

(1 1 0 0 1)
1 2 1 0 0
EX: |0 1 2 1 0 from Nie (2014)
O 0 1 2 1
\1 0 0 1 6)

Starting with Qp,, after |8 iterations our algorithm finds the COP-perfect

363/5 —2126/35  2879/70 608/21  —4519/210)
—2126/35  1787/35  —347/10  1025/42 253/14
2879/70  —347/10  829/35  —1748/105  371/30

608,21 1025/42 —1748/105 1237/105  —601/70
\—4519/210  253/14 371/30 —-601/70  671/105 |

giving a certificate for the matrix not to be completely positive
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(algorithm is known not to terminate)

=
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EX: A = =
| | V2
The COP-perfect matrix after ten iterations of the algorithm is

B0y _ (4756 6726
P = \—6726 9512 )°

It can be shown that the matrices Bg) converge to a multiple of

B = (_1/? _f> satisfying (A, B) = 0 and (X, B) > 0 for all X € CPs.



Irrational boundary cases

(algorithm is known not to terminate)

=
v2\ (V2 2 V2
EX: A = =
| | V2
The COP-perfect matrix after ten iterations of the algorithm is

B0y _ (4756 6726
P = \—6726 9512 )°

It can be shown that the matrices Bg) converge to a multiple of

B = (_1/? _f> satisfying (A, B) = 0 and (X, B) > 0 for all X € CPs.
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